Elliptic 3-folds and Non-Kähler 3-folds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Kummer 3-folds

We investigate a generalization of Kummer construction, as introduced in [AW08]. The aim of this work is to classify 3-dimensional Kummer varieties by computing their Poincaré polynomials.

متن کامل

Update on 3-folds

The familiar division of compact Riemann surfaces into 3 cases g = 0, g = 1 and g ≥ 2 corresponds to the well known trichotomy of spherical, Euclidean and hyperbolic non-Euclidean plane geometry. Classification aims to treat all projective algebraic varieties in terms of this trichotomy; the model is Castelnuovo and Enriques’ treatment of surfaces around 1900 (reworked by Kodaira in the 1960s)....

متن کامل

Toroidalization of locally toroidal morphisms of 3-folds

A toroidalization of a dominant morphism $varphi: Xto Y$ of algebraic varieties over a field of characteristic zero is a toroidal lifting of $varphi$ obtained by performing sequences of blow ups of nonsingular subvarieties above $X$ and $Y$. We give a proof of toroidalization of locally toroidal morphisms of 3-folds.

متن کامل

Deformations of Q-calabi-yau 3-folds and Q-fano 3-folds of Fano Index 1

In this article, we prove that any Q-Calabi-Yau 3-fold with only ordinary terminal singularities and any Q-Fano 3-fold of Fano index 1 with only terminal singularities have Q-smoothings.

متن کامل

Non-Abelian Brill–Noether theory and Fano 3-folds

The number h(L) of linearly independent section of a line bundle L can be used to define subschemes of JacC, called the Brill–Noether locuses. These have been studied since the 19th century, since they reflect properties of an individual curve that are beyond the control of the Riemann–Roch theorem. In this article, we recall this theory briefly in §2, then generalize it to the moduli spaces MC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 1992

ISSN: 2156-2261

DOI: 10.1215/kjm/1250519413